Motors & Drives: Energy Savings

Greg Rushby, P. Eng
Rushby Energy Solutions
Thursday June 22, 2017
Outline

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motors</td>
</tr>
<tr>
<td>Variable Frequency Drives</td>
</tr>
<tr>
<td>Utilizing the saveONenergy Incentives</td>
</tr>
<tr>
<td>Discussion / Questions</td>
</tr>
</tbody>
</table>
Why Care About Motors?

Source: Natural Resources Canada, Commercial & Institutional Sector Energy Use (2014)
Motor Types

- Majority of motors used in commercial / industrial sector are AC induction
Motor Energy Savings Opportunities

- Majority of motors are operated at constant speed

- Typical flow controls
 - Fans: dampers or inlet vanes
 - Pumps: bypass or throttling valves
 - Analogous to holding down the accelerator and using the brake to control car speed

- Many motors run for longer than needed

- Newer motors *slightly* are more efficient than older motors
Motor Efficiency

• Historically, standard and high efficiency motors were available

• Presently, only NEMA Premium (or better) motors are available for most frame sizes
Motor Starters

<table>
<thead>
<tr>
<th>Type</th>
<th>Pros</th>
<th>Cons</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Across-the-line</td>
<td>Simple, low-cost</td>
<td>No variable speed operation</td>
<td><5 hP</td>
</tr>
<tr>
<td>Soft starter</td>
<td>Variable speed operation</td>
<td>Inefficient part-speed operation</td>
<td>Motors that cycle frequently</td>
</tr>
<tr>
<td>Variable Frequency Drive</td>
<td>Efficient, active variable speed control</td>
<td>High cost (relative to other starters)</td>
<td>Systems that operate at part-load frequently</td>
</tr>
</tbody>
</table>
Motor Maintenance – Buy vs. Rewind

• An excellent opportunity to upgrade

• Motor rewind cost ~60-75% of new motor cost

• Motor rewind results in a 1-2% efficiency loss

• New motor is ~3-5% more efficient than a rewound motor
Turning Off Motors

• Motors use zero energy when turned off

• >95% of a motor’s lifetime cost is energy-related

• Just 1-minute of additional run-time consumes more energy than restarting a motor
Smaller Motors (<5 hp)

- Permanent split capacitor (PSC) motors are common
 - Low efficiency (~60%)
 - Single speed

- Consider ECM replacements
 - High efficiency (~80%)
 - Multiple speeds

- Typical applications:
 - Small HVAC
 - Refrigeration evaporators
Variable Frequency Drives (VFD)

- VFD
 - Adjustable speed drive
 - Vary frequency (Hz) and voltage going to the motor

- VFDs save energy when the load varies
 - Equipment is sized for peak loads
 - Peak conditions are ~1% of annual operating hours
VFDs on Constant Torque Loads

• Power varies linearly with motor speed / frequency

• Examples:
 • Conveyors, mixers, vacuum pumps, compressors, etc.
VFDs on Variable Torque Loads

- Relationship between power and motor speed is **cubic**!
 - 20% motor speed reduction = ~50% power reduction
 - 50% motor speed reduction =~85% power reduction

- Examples:
 - Centrifugal pumps and fans

![Graph showing cubic relationship between % Speed and % Torque](image)
Common VFD Applications

- Air handling unit and make-up air unit fans
- Exhaust fans
- Booster pumps
- Cooling / hot water pumps
- Chillers
- Air compressors
VFD Opportunity – Centrifugal Pumps

Image Source: Eaton
VFD Opportunity – Centrifugal Fans

Source: ASHRAE 2012 Handbook
Typical VAV Load Profile

Source: ASHRAE 2012 Handbook
Benefiting from VFDs

- VFDs are **not** plug & play

- To realize energy savings VFD applications must be properly:
 - Designed
 - Controlled
 - Commissioned
VFD and Motor Incentives – RETROFIT Program

- Program available throughout Ontario until December 31st, 2020
- Apply online at www.saveonenergy.ca
- Two types of incentives:

<table>
<thead>
<tr>
<th>Track</th>
<th>Incentive Rate</th>
<th>Energy and Demand Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescriptive</td>
<td>Fixed $ per unit*</td>
<td>Assumed</td>
</tr>
</tbody>
</table>
| Custom | Lighting ** $400/kW or $0.05/kWh
Non-Lighting** $800/kW or $0.1/kWh | Calculated by the Applicant |
Motor Incentives - Prescriptive

- Prescriptive incentives are available for motors that exceed NEMA premium efficiency (1 to 200 hp)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Simple application requirements</td>
<td>• Low incentives</td>
</tr>
<tr>
<td></td>
<td>• Few motors qualify</td>
</tr>
</tbody>
</table>
Motor Incentives - Prescriptive

• Prescriptive incentives are also available for:
 • ECM for walk-in coolers / freezers
 • VAV fan-powered box ECM motor retrofit
 • New VAV fan-powered box w/ ECM
Motor Incentives - Custom

• Prescriptive Worksheet assumes a NEMA premium motor is being replaced
• If an older motor is being replaced, savings will be higher

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Potential for higher incentive</td>
<td>• Requires calculations</td>
</tr>
</tbody>
</table>
Simple Motor Savings Calculations

For fixed speed motors:

$$kW\ Savings = hP \times L \times 0.746 \times \left[\frac{100}{E_{\text{Old}}} - \frac{100}{E_{\text{New}}} \right]$$

$$kWh\ Savings = hP \times L \times 0.746 \times Hrs \times \left[\frac{100}{E_{\text{Old}}} - \frac{100}{E_{\text{New}}} \right]$$

- hP = Rated horsepower
- L = Load factor (%)
- E_{old} = Existing motor efficiency
- E_{new} = New motor efficiency
- Hrs = Annual operating hours
Prescriptive vs. Custom Incentive - Example

<table>
<thead>
<tr>
<th>Existing Motor</th>
<th>Proposed Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 50 hp</td>
<td>• 50 hp</td>
</tr>
<tr>
<td>• TEFC</td>
<td>• TEFC</td>
</tr>
<tr>
<td>• 92.4% efficiency</td>
<td>• 95.1% efficiency</td>
</tr>
<tr>
<td>• 75% loaded</td>
<td>• 75% loaded</td>
</tr>
</tbody>
</table>

• Prescriptive Incentive = $155
• Custom Incentive = 0.86 kW x $800 / kW = $687
Prescriptive VFD Incentives

- Incentive is ~10% demand savings on a 75% loaded motor (at $800 per kW saved)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Simple application requirements</td>
<td>• Engineered / Custom usually has higher incentives</td>
</tr>
<tr>
<td>• Incentive often ~50% of materials costs</td>
<td>• Does not cover motors >100 hP</td>
</tr>
</tbody>
</table>
Prescriptive VFD Incentives

Variable Frequency Drive (VFD) Incentives

<table>
<thead>
<tr>
<th>Motor Size on which VFD is installed (HP)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7.5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant Incentive ($/VFD)</td>
<td>$50</td>
<td>$80</td>
<td>$105</td>
<td>$160</td>
<td>$265</td>
<td>$400</td>
<td>$535</td>
<td>$805</td>
<td>$1,070</td>
<td>$1,340</td>
<td>$1,610</td>
<td>$2,145</td>
<td>$2,565</td>
<td>$3,220</td>
<td>$3,980</td>
<td>$4,835</td>
</tr>
</tbody>
</table>

Required Information

<table>
<thead>
<tr>
<th>Information</th>
<th>Example</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason: "N"=New or "F"=Failed</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location: Building and Room</td>
<td>North Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD Manufacturer</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFD Model Number</td>
<td>GH553</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Size in Horsepower</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Speed in RPM</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Efficiency</td>
<td>94.20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Run Hours (actual)</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant Incentive ($/VFD) (Table)</td>
<td>$80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Participant Incentive</td>
<td>$80</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Note: The Eligible Measures Lists and Eligible Measures Worksheets are based on assumptions and are subject to change and the incentive amounts do not include HST or other applicable taxes.
Custom VFD Incentives

• Projects where >10% savings are being achieved typically achieve higher Custom incentives
• Engineered Worksheets are available for pumps / fans
• Projects where incentives are >$10,000 require measurement and verification (M&V)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Potential for higher incentive</td>
<td>• Savings must be calculated</td>
</tr>
<tr>
<td>• May require M&V</td>
<td>• May require M&V</td>
</tr>
</tbody>
</table>
Example Custom VFD Project

Domestic Cold Water Booster Pump Upgrade
• 25 floor apartment building

Base Case
• 2 x 25 hP constant speed pumps

Efficient Case
• 3 x 7.5 hP pumps w/ VFD & controls
• $40,000 installed

<table>
<thead>
<tr>
<th>Base Case kW</th>
<th>Efficient Case kW</th>
<th>Savings kW</th>
<th>Incentive $11,900</th>
<th>Payback 2.4 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>153,000</td>
<td>4</td>
<td>34,000</td>
<td>119,000</td>
</tr>
</tbody>
</table>
Summary

• **Motors**
 • Are a significant user of electricity in commercial and industrial buildings
 • Consider inventorying your motors
 • Consider upgrading to a new motor instead of rewinding
 • Most motors run at full speed
 • Many motors run for longer than needed

• **VFDs**
 • Are a cost-effective and energy efficient way to control flow

• Incentives are available for motors & VFDs

• Thank you for your participation!
Questions

Greg Rushby, P.Eng
Rushby Energy Solutions Inc.
226-747-5066
grushby@rushbyenergy.com

www.rushbyenergy.com